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A B S T R A C T   

In the long-term development of the electric power system, system operators should consider the socio-economic 
balance between grid investment costs and security of supply, including the risk of power supply interruptions. 
Cost-benefit analyses conducted for this purpose are associated with many uncertainties but have traditionally 
focused on the expected value of the net socio-economic benefits of risk-reducing measures. This article focuses 
on the large uncertainties that are associated with the possible occurrence of high-impact low-probability 
interruption events (HILP events). The objective is to quantify and visualize the implications of uncertainties due 
to HILP events in the context of power system development. More specifically, this article describes a method-
ology accounting for uncertainties in socio-economic cost-benefit analysis of measures for reducing the risk of 
HILP events. The methodology accounts for the contributions of both aleatory and epistemic uncertainties and 
comprises a hybrid probabilistic-possibilistic uncertainty analysis method. Applying the methodology to a real 
case involving a grid investment decision, it is demonstrated how it provides additional insight compared to 
conventional cost-benefit analyses considering expected values where uncertainties are not accounted for 
explicitly. It is furthermore discussed how these results can help to better inform grid development decisions.   

1. Introduction 

For an electric power transmission system, system development in-
volves activities carried out by the transmission system operator (TSO) 
to ensure safe system operation, provide a high level of security of 
supply and contribute to the socio-economic efficiency of the system [1]. 
It is a part of long-term power system planning, considering planning 
horizons up to several decades into the future, and involves choices 
between different grid investment alternatives. Grid investment costs 
can be substantial and are ultimately socialized to the end user through 
the grid tariffs. Several countries have introduced interruption costs in 
their quality of electricity supply regulation to achieve a better 
socio-economic balance between grid costs and security of supply. To 
use Norway as an example, a cost of energy not supplied (CENS) scheme 
is implemented by which interruption costs are estimated and deducted 
from the grid companies’ revenue caps [2–5]. The Norwegian TSO 
Statnett is required by law [6] to develop the transmission grid in a 
socio-economic rational manner. Recently, Statnett has moreover 
implemented new guidelines for assessing security of supply in power 
system planning. According to these guidelines, the TSO shall 1) 

describe risk of power supply interruptions for all grid development 
alternatives, 2) monetize security of electricity supply as far as possible 
in their socio-economic cost-benefit analyses, and 3) quantify to the 
extent possible the relevant uncertainties. Traditionally, such 
cost-benefit analyses have focused on expected values of interruption 
costs as an approximation for their societal costs. Historically, the risk of 
power supply interruptions may even not have been quantified at all. In 
either case, uncertainties were not explicitly considered in the 
cost-benefit analysis. A comprehensive description of risks is important 
to inform long-term system development decisions, and there is thus a 
need for new and improved methods to account for uncertainties. 

This article is concerned with a specific subset of uncertainties 
related to security of supply, namely uncertainties due to the possible 
occurrence of high-impact low-probability (HILP) events. This term re-
fers to extraordinary events in the power system with high societal 
consequences (or impact) to society and thus high socio-economic costs 
[7–9]. Examples of such events include major blackouts due to extreme 
weather, due to other natural hazards, or due to more diverse and 
complex causes [8,10–12]. The associated uncertainties are very high 
because of the lack of knowledge about the likelihood that such events 
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may occur and also about their actual societal impact if they do. The 
objective of this work is to quantify and visualize the implications of 
uncertainties due to HILP events in the context of power system devel-
opment. The purpose is to better inform system development decisions 
by comprehensively describing risk and uncertainty. 

In general, one can distinguish between aleatory uncertainty, which 
represents random or stochastic variation, and epistemic uncertainty, 
which represents uncertainty due to lack of knowledge [13]. One can 
argue that since HILP events are unique or extremely rare events, they 
are intrinsically associated with large epistemic uncertainties [14]. This 
has been acknowledged in the general risk assessment literature, and it 
is argued that a weak knowledge basis makes it difficult to justify a 
probabilistic uncertainty analysis [13,15,16]. It has furthermore been 
argued that a possibilistic approach to uncertainty analysis may be a more 
appropriate approach for such epistemic uncertainties [13,17]. 

Estimates of the risk of HILP events will be associated with both 
aleatory and epistemic contributions to uncertainty, as exemplified later 
in this article. It is therefore important to capture both types of un-
certainties in the analysis. Purely possibilistic or fuzzy representation of 
uncertainty in power system risk assessment applications has a long 
history, see e.g. [17,18] and references therein. One relevant example 
for our work is [19], which compares different risk-averse operating 
criteria to a fuzzy representation of failure rate uncertainty. General 
mathematical methods for accounting for uncertainty in power system 
analysis, including probabilistic methods, possibilistic methods, and 
hybrid methods that combine probabilistic and possibilistic represen-
tations of uncertainty, are reviewed in [20–23]. However, the reviews 
do not focus on risk assessment, and none of the reviewed works 
consider the risk assessment of HILP events. Ref. [14] describes the 
development of a qualitative framework for analysing HILP events in the 
context of different power system decisions. This framework includes 
characterizing and accounting for relevant uncertainties, but methods 
for quantitative analysis of uncertainties were left for future work. 

Different hybrid probabilistic-possibilistic uncertainty analysis 
methods have previously been applied to power systems risk analysis in 
e.g. [18,24,25] to account for both aleatory and epistemic uncertainty. 
References [18,25] apply such methods in the context of power system 
reliability analysis to quantify the uncertainty in estimates for energy 
not supplied. Reference [24] presents a method that is applied to 
quantify the uncertainty in metrics for the power system’s vulnerability 
to transmission line failures. Still, none of these works focus on HILP 
events, and none of them are set in the context of power system devel-
opment decisions or involve cost-benefit analyses. More relevant work 
on combined probabilistic-possibilistic analysis of the risk of HILP-like 
events is reported in the general risk assessment literature [26,27]. To 
the best of our knowledge, such methods have not previously been 
applied to HILP events in power systems. 

In this article, we build upon previous research outlined above and 
extend methodologies for uncertainty analysis to power system devel-
opment decision problems involving possible HILP events. One proba-
bilistic approach to this problem would be to balance the expected 
interruption costs of HILP events against the cost of risk-reducing grid 
investment measures using a socio-economic cost-benefit analysis 
framework as described in e.g. [19,28–30]. However, questions have 
been raised in the risk assessment community of whether cost-benefit 
analysis alone is appropriate for decision making under uncertainties 
so severe as is the case with HILP events [31,32]. Moreover, the de-
pendency on expected values has been seen as problematic [33]. The 
main contributions of the present article to the research literature can be 
stated as follows:  

1 Formulating the problem of accounting for uncertainties due to HILP 
events in the context of socio-economic cost-benefit analysis for 
power system development. This is, to the best of our knowledge, the 
first time this problem has been described and addressed in the 
research literature.  

2 Proposing a novel application of hybrid possibilistic-probabilistic 
uncertainty analysis methods to the above problem, quantifying 
the implications of uncertainties relevant for HILP events. The nov-
elty lies in the techniques proposed for visualizing the implications of 
the uncertainties to power system development and in incorporating 
socio-economic cost-benefit analysis, and the methodology also ex-
tends previously published work by including Latin Hypercube 
Sampling and a surrogate model in the uncertainty analysis. 

3 Applying the methodology to a real case, illustrating thus the addi-
tional insights that TSOs can gain compared to considering only 
expected values in system development decisions. This comprehen-
sive case study was carried out in close collaboration with the Nor-
wegian TSO and considers a concrete case where the TSO considers 
investing in an additional transmission line to reduce the risk of HILP 
events. 

The rest of the article is structured as follows. Section 2 introduces 
the necessary preliminaries of a socio-economic cost-benefit analysis for 
power system development decisions and presents the proposed uncer-
tainty analysis methodology. The methodology is exemplified by 
applying it to a concrete case study in Section 3. Here, the uncertainties 
appearing in the cost-benefit analysis are quantified and visualized, and 
emphasis is put on illustrating how different visual representations may 
provide additional insight into the decision problem. The implications of 
applying this methodology for power system development decision 
making are discussed in Section 4, before the article is concluded in 
Section 5. 

2. Methodology 

To simplify the presentation of the methodology we will in this 
section consider the choice between two generic power system devel-
opment alternatives: The costs and benefits of risk-reducing measures 
considered to reduce the risk of HILP events (alternative B) are 
compared to a reference alternative (or zero alternative) without such 
measures (alternative A). Concrete examples of such system develop-
ment alternatives are illustrated in the case study in Section 3. Imple-
menting risk-reducing measures is, without lack of generality, assumed 
to reduce the frequency of occurrence of HILP events from λ to (1 −

fred)λ < λ. How the baseline frequency λ, the reduction factor fred, and 
other parameters related to the HILP event can be estimated will depend 
on the case and is not the focus of the methodology presented here. 
Instead, the methodology intends to contribute to answering the 
following: Given that the TSO needs to make a system development 
decision, and given some estimates for parameters relevant to the de-
cision and their uncertainties, how can this information about what is 
known or not known to the TSO be used to support decision making? 

The proposed uncertainty analysis methodology is outlined step by 
step below:  

1 Socio-economic cost-benefit analysis including interruption costs: 
This is the starting point that the proposed uncertainty analysis is 
building upon and is first presented in Section 2.1 without consid-
ering uncertainties.  

2 Probabilistic uncertainty analysis: Simulations to estimate the risk of 
HILP events, accounting for only aleatory uncertainties and using 
fixed values of parameters with epistemic uncertainty, are described 
in Section 2.2 (as an inner loop of a double-loop Monte Carlo 
method). 

3 Hybrid possibilistic-probabilistic uncertainty analysis: Method ac-
counting also for epistemic uncertainties (as an outer loop of a 
double-loop Monte Carlo method) is presented in Section 2.3, 
quantifying and visualizing uncertainties in the form of possibility 
distributions and probability bounds. 

The flowchart in Fig. 1 illustrates schematically the methodology 
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including the double-loop Monte Carlo method and how the different 
steps are related. Each step of the methodology is also applicable to non- 
HILP events, but as explained in Section 3, the value of including pos-
sibilistic uncertainty representation (Step 3) is greater when there are 
large epistemic uncertainties, such as for HILP events. 

2.1. Socio-economic cost-benefit analysis including interruption costs 

Investment decisions choosing between different grid development 
alternatives should be based on a socio-economic cost-benefit analysis 
accounting for the risk of power supply interruption events for the al-
ternatives. This section describes the basic formulation for such an 
analysis for general interruption events, and then application to HILP 
events and their uncertainties is considered in the following. Typically, 
an estimate for the societal costs associated with interruption events is 
quantified in monetary terms as the expected annual interruption cost 
ICa. This can be understood as a measure of the risk associated with the 
interruption event and can in its simplest form be expressed as follows: 

ICa = λ ⋅ r ⋅Pinterr ⋅ c. (1) 

This equation expresses the long-term average interruption cost (in 
NOK per year) as a function of the frequency of occurrence λ of the event 
(per year), the average interrupted power Pinterr during the event (MW), 
the average interruption duration r (hours) and the average specific 
interruption cost c for end-users affected by the event (NOK/MWh). 

The cost-benefit analysis is based on discounting all socio-economic 
cost contributions over an extended analysis horizon to the present and 
calculating the present value. We denote the present value of the total 
socio-economic costs by the total costs, TC, which can be calculated as 

TC = C + IC = C +
∑yend

y=1

ICy

(1 + fd)
y, (2)  

where y is the number of the year in the analysis horizon and fd is the 

discount rate. IC denotes the present value of the interruption costs, and 
C is the grid investment costs, which is assumed to be incurred in year 
y = 0. The analysis horizon is denoted by yend. 

Eq. (2) neglects several of the socio-economic benefits that are 
considered in the socio-economic cost-benefit analysis ordinarily carried 
out by the TSO, such as e.g. reduction in grid losses and reduction in 
congestion costs [28,29]. We omit these terms here to simplify the 
presentation and to focus on the key contributions in this work, namely 
the risk associated with possible HILP events. Moreover, differences 
between the grid development alternatives for these contributions were 
negligible in the case that is presented in Section 3. The total 
socio-economic impact or net present value (benefits minus costs) of 
risk-reducing measures when comparing to zero alternative can then be 
expressed as 

ΔTC = TCB − TCA. (3) 

For brevity, we will henceforth refer to ΔTC as the net socio-economic 
benefit. When estimating the interruption costs in a given year y in the 
future, we have to account for the expected growth in load demand, 
which determines the power Pinterr,y that is potentially interrupted. In 
addition, we should also account for a possible increase in the specific 
interruption cost cy. The time development for both parameters will be 
modelled assuming constant annual growth rates fP and fc as follows: 

Pinterr,y = Pinterr,y=0(1 + fP)
y
, (4)  

cy = cy=0(1 + fc)
y
. (5)  

2.2. Probabilistic uncertainty analysis 

This section describes probabilistic simulations for estimating the 
risk of HILP events, accounting for aleatory uncertainties as the inner 
loop of a double-loop Monte Carlo (MC) method. The inputs assumed for 
these simulations include probability distributions for interruption 
duration r and for grid investment costs CA and CB for the reference 
alternative and for risk-reducing measures, respectively, and an hourly 
time series of the load P(t) potentially interrupted in case of a HILP 
event. The specific interruption cost c is assumed to be described by a 
function c(t, r) of the interruption duration r and the time of occurrence 
t. Epistemic uncertainties are for the time being neglected but will be 
considered in Section 2.3. The methodology follows a basic Monte Carlo 
approach where we run a large number NMC of MC simulations of the 
yend-year analysis horizon. For each simulation, we draw pseudo- 
random numbers to simulate the possible occurrence of HILP events, 
and we estimate the interruption costs due to HILP events, both when 
assuming the zero alternative (A) and when assuming that risk-reducing 
measures have been implemented (B). 

We model the occurrence of a HILP event during a given year as a 
Bernoulli experiment with a probability 

p = 1 − e− λΔt ≈ λΔt (6)  

for alternative A, where the period Δt = 1 year. For alternative B, only a 
fraction (1 − fred) of the events sampled in this manner are modelled as 
occurring. For each sampled HILP event, pseudo-random numbers are 
generated for parameter triplets (Pinterr, r, c). First the time (hour) of 
occurrence t is sampled from a uniform distribution over the range of t 
values that the hourly load input time series P(t) is defined for, and the 
interruption duration r is sampled from its probability distribution. The 
average interrupted power is then calculated as 

Pinterr(t, r) =
1
r

∑t+r− 1

t
P(t). (7) 

The average specific interruption cost c for the event is calculated 
from the function c(t,r). In the case study in Section 3, this is exemplified 
using the Norwegian CENS scheme as described in the Appendix. In this 

Fig. 1. Schematic illustration of the proposed methodology.  
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manner, time-dependant correlations between r, Pinterr and c are 
captured in the analysis [17,34]. For each year, the interruption cost is 
estimated according to ICy = Pinterr,y ⋅ r ⋅ cy, where (4) and (5) have been 
used to account for the year of occurrence. 

For a given MC iteration, the total present value of the interruption 
costs over the analysis horizon for grid development alternatives 
(ICA and ICB) is then calculated using (2). The probability distributions 
of these interruption costs are then estimated based on the NMC re-
alizations from the MC simulation in the form of cumulative distribution 
functions (CDFs) F(ICA) and F(ICB). Similarly, an estimate is made for 
the probability distribution F(ΔTC) of the net socio-economic benefit of 
the risk-reducing measures. 

The estimated probability distributions can be used to derive the 
expected value E(IC) of the interruption cost. To quantitatively assess 
the high-impact tail of the probability distribution for IC, the Value-at- 
Risk will also be considered. The Value-at-Risk at level γ, VaRγ(IC), is 
a risk measure that is implicitly defined by the relation F(VaRγ(IC)) = 1 
− γ and corresponds to the (1 − γ)⋅100% percentile of the distribution for 
IC. 

2.3. Hybrid probabilistic-possibilistic uncertainty analysis 

In contrast to the probabilistic representation, a possibilistic uncer-
tainty representation does not assume the existence or knowledge of any 
probability distribution for the value of the uncertain parameter. 
Instead, it is based on a possibility distribution representing the degree of 
possibility (not probability) of the parameter. We use the notation π(x)
for the possibility distribution function for a general variable x, where 
0 ≤ π(x) ≤ 1. If π(x) = 0 for a value of x, this means that this outcome of 
x is impossible. On the other hand, π(x) = 1 simply means that this 
outcome of the value of x is possible. All values of x with π(x) > 0 would 
also be possible to some degree, and we denote the set of these values as 
Ax. 

In a possibilistic uncertainty analysis, uncertainties can be propa-
gated using a method based on so-called α-cuts [13,20,21,23]. For a 
variable x, the α-cut Ax,α⊆Ax is defined as 

Ax,α =
[
x−α , x+α

]
= {x ∈ R | π(x) ≥ α}. (8) 

The uncertainties that are represented in possibilistic terms define an 
epistemic uncertainty space A ≡ Ax1 × … × AxN . This is a hyper-rectangle 
that defines the region of the parameter space that is considered possible 
for these uncertain parameters. 

The proposed hybrid probabilistic-possibilistic uncertainty analysis 
is based on a double-loop Monte Carlo method for propagating aleatory 
and epistemic uncertainties. This double-loop MC method was inspired 
by [24] and is illustrated in Fig. 1: The outer loop samples a set Sx of 
possible realizations x from the epistemic uncertainty space A ≡ Ax1 ×

… × AxN ; for each realization x ∈ Sx⊂A, the inner loop samples NMC 
realizations of the interruption costs of HILP events from the aleatory 
uncertainty space using the probabilistic uncertainty analysis as 
described in Section 2.2. The double-loop method thus generates a set of 
CDFs Fx(Y) for each realization x ∈ Sx of epistemic uncertainty. Here, Y 
can represent any of the socio-economic quantities defined in Section 
2.1, and the CDF Fx(Y) describes the aleatory uncertainty in Y for a given 
value of x. 

We then introduce Z(x) to denote any uncertain quantity derived 
from the CDFs Fx(Y) that depends on the realization of epistemic un-
certainties x. This can be used to represent both the value of Fx(Y) as a 
function of x for a fixed value of Y, and to represent the expected value 
E(Y) as a function of x that is obtained by integrating over all values of Y. 
The expected socio-economic cost for the zero alternative, Z(x) =

E(TCA), is an example of such a statistic for the case that Y = TCA. The 
outputs of the methodology described below will be possibility distri-
butions π(Z) that represent the epistemic uncertainty in Z and proba-
bility bounds, also referred to as p-boxes [24], which visually describe 

the contributions of aleatory and epistemic uncertainty for an uncertain 
quantity Y. 

In the methodology we first need a set of samples Sx from the 
epistemic uncertainty space in the outer loop. From the possibility dis-
tributions π(xi) we construct M α-cuts for each input parameter xi. These 
will be denoted Axi ,αj and calculated for the set of α values 
{α1 = 0,α2,…, αM = 1} using (8). We then let Aαj ∈ RN denote the hyper- 
rectangle formed by the jth α-cut for the N individual variables in x: 

Aαj = Ax1 ,αj × … × AxN ,αj =
{

x | x1 ∈ Ax1 ,αj ∧ … ∧ xN ∈ AxN ,αj}. (9) 

To propagate the uncertainties in the input parameters x1,…, xN to 
the resulting uncertainty in Z, we calculate M α-cuts AZ,αj = [Z−

αj
, Z+

αj
] for Z 

for each αj ∈ {α1,…,αM}. To do so we need to find the lowest and highest 
values of Z possible for any x within the hyper-rectangle Aαj [13,20,24]: 

[
Z−

αj
,Z+

αj

]
=

[

min
x∈Aαj

Z(x), max
x∈Aαj

Z(x)

]

. (10) 

The possibility distribution π(Z) is then constructed from this set of 
α-cuts for Z. Probability bounds are constructed for each value of Y by 
considering the α-cut for αj=1 = 0. This corresponds to finding the upper 
and lower bounds on F(Y) for the set of all possible CDFs Fx(Y). 

To estimate the α-cuts in Eq. (10) we propose the following samples 
Sx: The set of vertices of the hyper-rectangles Aαj are first sampled for all 
M α-cuts. This amounts to nvertex = 2(M − 1)N + 1 samples from the 
epistemic uncertainty space. Then, Latin Hypercube Sampling (LHS) 
[35] is employed to make nLHS additional samples in order to cover more 
of the epistemic uncertainty space within these hyper-rectangles. This is 
done since there is no guarantee in our case that the minimum and 
maximum of Z(x) for each α-cut can be found on the vertices of the 
corresponding hyper-rectangle. Latin Hypercube Sampling was chosen 
over random Monte Carlo sampling because of its space-filling proper-
ties and stability [35], which should make the methodology suitable also 
for higher-dimensional problems and extensive sensitivity analyses. 
Based on the samples Sx, the function Z(x) within the hyper-rectangle is 
approximated by a quadratic response surface (surrogate) model [36] 

Z̃(x) = β0 +
∑

i
βixi +

∑

i
βi,ix2

i +
∑

i,k>i
βi,kxixk. (11) 

To solve Eq. (10), bounded quadratic optimization can then be 
applied to this function to find any maximum and minimum within the 
hyper-rectangle Aαj , and the result is combined with the maximum and 
minimum of Z(x) obtained by vertex optimisation [24]. This part of the 
uncertainty analysis methodology differs from that previously presented 
in [24] in the use of LHS and surrogate models, in addition to the pre-
sentation of outputs as possibility distributions. 

3. Case study: accounting for the risk of HILP events in a grid 
investment decision 

The development and testing of the methodology reported in this 
article has been carried out in parallel with a case study in collaboration 
with the Norwegian TSO Statnett. This case study concerns accounting 
for the risk of possible HILP events in the long-term system development 
plans for a region of Norway in addressing a specific and real grid in-
vestment decision problem. The details cannot be published due to 
confidentiality, but a simplified illustration of the transmission system in 
the region is shown in Fig. 2. Area 2 is a major load centre that expects a 
substantial but uncertain increase in load demand over the next decades. 
The problem involves two grid development alternatives (A and B) that 
are considered to ensure an acceptable level of security of supply in Area 
2. Simply put, the difference between the alternatives as shown in Fig. 2 
is that alternative B includes an additional transmission line into Area 2. 
This additional line is expected to reduce the likelihood of common- 
cause outages of the transmission lines between Area 1 and Area 2 
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due to physical damage to the transmission infrastructure. Such an 
outage event is highly unlikely, but if it occurs it would result in long- 
lasting power supply interruptions in Area 2, and it is therefore regar-
ded as a HILP event. 

Grid development alternative A will be referred to as the zero alter-
native, which represents a continuation of the present grid situation. The 
zero alternative nevertheless needs to ensure compliance with laws and 
regulations and that the system can be operated in an acceptable 
manner, but it typically includes the minimal investment costs necessary 
to make it an acceptable alternative. In particular, the zero alternative in 
our case does not specifically include measures to reduce the risk of HILP 
events. This simple but concrete case allows us to focus on the key points 
of the uncertainty analysis methodology. The general methodology can 
also incorporate consequence analysis for more complex cases, but the 
illustration of the methodology for such cases would be less transparent. 
An implementation of the methodology for this case is available in 
MATLAB code [37] without the need of additional software tools. 

3.1. Input parameters and characterization of uncertainties 

Table 1 summarizes the assumptions made about the input param-
eters for the case. For all uncertain parameters in Table 1 except from 
Pinterr and c, no knowledge is available of any underlying stochastic 
processes. For these parameters a simplified expert elicitation scheme 
[38] was used to obtain estimates for parameter values and their un-
certainty: TSO experts were asked to estimate the lowest and highest 
values they regarded as possible, considering the knowledge that was 
available. The uncertainty is characterized quantitatively in Table 1 by a 
lower limit x− and an upper limit x+. The best-guess value x0 for the 
parameter is the value they would use in an analysis where uncertainties 
are not accounted for explicitly. This value can also be interpreted as the 

most likely value. For instance, for the parameter λ, the uncertainty can 
be described by statements such as: “Our best guess is that such an event 
can be expected to occur once in 1000 years, but λ could be as high as 1/
(100 years) or as low as 1/(10 000 years).” 

The “Uncertainty characterization” column in Table 1 summarizes 
whether uncertainties are a) primarily due to stochasticity (aleatory) or 
b) primarily due to lack of knowledge (epistemic). For the latter, the 
column also suggests the strength of knowledge associated with the 
uncertain parameter. For this case, one considers the strength of 
knowledge to be weakest for the frequency of occurrence λ. Such HILP 
events are expected to be extremely rare and correspond to unique sit-
uations [13,15], and there are no relevant existing statistics or experi-
ence base for similar events. The very large (epistemic) uncertainty 
estimated for λ for this HILP event motivates the special attention it is 
given in this uncertainty analysis. 

Possibility distributions are chosen to represent uncertainty in the 
parameters characterized in Table 1 as primarily associated with 
epistemic uncertainty. The input parameters defining the epistemic 
uncertainty space A are thus x = {λ, fred, fP, fc} We furthermore define a 
triangular possibility distribution with π(x) > 0 for x ∈ Ax and π(x) = 1 
for the best-guess value x = x0. This choice was made because we have a 
range of possible values and a value that is believed to be most likely but 
lack information justifying a more detailed uncertainty representation. 
Probabilistic uncertainty representations are chosen for those variables 
characterized in Section 3.1 as primarily associated with aleatory un-
certainty. The variability in interrupted power Pinterr and specific 
interruption costs c is modelled probabilistically using time series as 
described in Section 2.2. We use a time series P(t) for the load demand in 
Area 2 with hourly measurements for six historic years. The specific 
interruption cost function c(r, t) is in this case study given by the Nor-
wegian CENS scheme [2–5], as described in the Appendix. Other inter-
ruption cost functions can be used in applying the methodology to other 
countries. Probability distributions are chosen to represent the uncer-
tainty in the interruption duration r and in the grid investment costs CA 

and CB. Triangular probability density functions are considered to be 
reasonable approximations based on the TSO’s experience. 

The best-guess values for the relative annual load growth fP and the 
relative annual increase in specific interruption cost fc are based on 
prognoses typically used by the TSO in their long-term system devel-
opment analyses for the area. The value of fc is an estimate of the annual 
increase in real income in the region, which is used by the TSO as an 
approximation for how much end-users value the reliability of supply. 
However, it is recognized that the knowledge basis underlying this 
parameter value is rather weak. We use an analysis horizon of yend = 40 

Fig. 2. System sketch for power system development case involving the choice 
between two grid development alternatives. 

Table 1 
Assumptions and uncertainty estimates for input parameters.  

Uncertain parameter, x  Symbol and 
units 

Best-guess 
value, x0  

Uncertainty characterization for the case study Lower 
limit, x−

Upper 
limit, x+

Frequency of occurrence 
(without risk-reducing measures) 

λ (per year)  0.001 Epistemic (unknown; fundamental lack of knowledge) 0.0001 0.01 

Interrupted power Pinterr (MW)  250 Aleatory (depends on the time of the power supply interruption; time 
series input data available) 

n/a n/a 

Interruption duration r (hours)  168 Aleatory (primarily) 84 504 
Specific interruption costs (given by 

Norwegian CENS scheme) 
c (NOK/ 
MWh)  

55 000 Aleatory if assuming the CENS scheme (depends on the time of the 
power supply interruption); epistemic contributions not considered here 

n/a n/a 

Effectiveness of risk reduction measure 
(reduction factor for λ)  

fred  90% Epistemic (medium strength of knowledge) 50% 100% 

Annual load growth rate fP  0.87% Epistemic (medium strength of knowledge) 0.61% 1.15% 
Annual growth rate in specific 

interruption costs 
fc  1.3% Epistemic (weak-to-medium strength of knowledge) 0.0% 2.0% 

Grid investment costs (for zero 
alternative and for risk-reducing 
measures) 

CA (106 

NOK)  
950 Aleatory (primarily) 855 1045  

CB (106 

NOK)  
1150 Aleatory (primarily) 1035 1265  
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years and a discount rate fd = 4%. These parameters are not associated 
with uncertainty. For this case study it was assumed by the TSO that a 
certain HILP event can only occur once during the analysis horizon, 
since if it does occur, measures then would be implemented to avoid that 
it reoccurs. 

3.2. Uncertainties in interruption costs due to HILP events 

Fig. 3 shows the probability distribution (CDF) estimated for the case 
for the impact of a single HILP event. The impact is here measured by the 
interruption costs ICy = Pinterr,y ⋅ r ⋅ cy, assuming that an event occurs 
in year y = 1. The cyan curve shows the effect of accounting for time- 
dependant correlations between load P and specific interruption costs 
c. In other words, it captures the effect that load demand and the 
valuation of reliability of supply are both higher during winter months. 
The magenta curve is produced using the same marginal probability 
distribution for c but neglecting time-dependant correlations. The ex-
pected value E(IC) is indicated by dashed lines, and the dotted line in-
dicates the Value-at-Risk VaR0.01(IC). Accounting for time-dependant 
correlations clearly shifts the Value-at-Risk towards the right. This 
means that time-dependant correlations increase the contributions to 
the high-impact tail of the probability distribution and contribute to 
making extreme high-impact outcomes more likely. However, because 
time-dependant correlations also make relatively low-impact outcomes 
more likely, they do not appreciably shift the expected value. 

Probability distributions for the interruption costs due to HILP events 
during the entire analysis horizon are shown in Fig. 4. For this case 
study, NMC = 105 Monte Carlo realizations are used to estimate the 
CDFs. This gives a coefficient of variation below 2% for the estimated 
expected value, and we have verified that a higher value of NMC does not 
appreciably change the results presented below. We first consider ICA, i. 
e. the present value of interruption costs due to HILP events for grid 
development alternative A (the zero alternative). The left-hand side of 
Fig. 4 shows the probability distribution F(ICA). The expected value 
E(ICA) = 100⋅106 NOK is shown as a vertical dashed line. One imme-
diately observes that the CDF rises abruptly from F(ICA = 0) = 0 to 
F(ICA≳0) ≡ 1 − pHILP,A ≈ 0.961. The probability distribution for the 
interruption costs has this shape because the sampled interruption 
events are HILP events and thus assumed to be extremely rare. Most of 
the probability weight therefore lies at ICA = 0, which is the outcome 
that no HILP events occur during the analysis horizon. The estimated 
probability of this outcome is more than 96%. If this probabilistic 
analysis had instead been applied to the case of more frequent (non- 
HILP) events, the CDF would have been increasing from F(ICA = 0) = 0 
with a smoother S-like shape. 

The probability distribution plotted for a narrower range of F(ICA)

values and a wider range of ICA values is shown as an inset to better 
illustrate the distribution of the impact for the realizations where at least 
one HILP event does occur during the analysis horizon. When the dis-
tribution function is viewed on this scale, the expected value E(ICA) lies 
very close to the y axis and appears to be almost negligible compared to 
the potential high-impact outcomes in the tail of the distribution 
function. 

The right-hand side of Fig. 4 shows how the risk of HILP events is 
changed if the risk-reducing measures are implemented (i.e. alternative 
B with an additional transmission line). Here, an alternative visualiza-
tion is proposed where both the x and y axes are logarithmic to better 
show the full range of values for both IC and F(IC). This makes it easier 
to compare the CDFs F(ICB) and F(ICB) for the grid development alter-
natives. The intercept with the y axis in Fig. 4 shows how the risk- 
reducing measures reduce the probability of HILP events from pHILP,A ≈

0.033 to pHILP,B ≈ 0.004. Furthermore, the investment in an additional 
line reduces the expected value from E(ICA) ≈ 100⋅106 NOK to 
E(ICB) ≈ 10⋅106 NOK. These risk-reducing measures also affect the tail 
of the estimated probability distribution, and the dotted lines show how 
the Value-at-Risk VaR0.001(ICA) = 6.5⋅109 NOK is reduced to 
VaR0.001(ICB) = 3.4⋅109 NOK. These results quantify how the risk- 
reducing measures may lead to a substantial reduction in the risk asso-
ciated with the most extreme (here: the worst 0.1%) outcomes, in 
addition to the reduction in the expected value. At the same time, the 
figure shows that there is still a possibility of very high-impact outcomes 
even with the additional grid investments of alternative B. 

3.3. Uncertainties in socio-economic costs for grid development 
alternatives 

We first consider a conventional cost-benefit analysis considering 
expected values where uncertainties are not accounted for explicitly. 
The results for the two grid development alternatives are shown in 
Figure 5. Here, the parameters x associated with epistemic uncertainties 
have been fixed to their best-guess value x0. These results will serve as a 
benchmark for the more comprehensive descriptions of risk presented 
later in this subsection, where the implications of both aleatory and 
epistemic uncertainties are explicitly accounted for and visualized. 

Figure 5 shows that the expected total socio-economic costs 
E(TC(x0)) are greater with an additional transmission line, with a best- 
guess estimate around E(TCB(x0)) = 1150 ⋅106 NOK, compared to 
around E(TCA(x0)) = 1050 ⋅106 NOK for the zero alternative. The 
additional transmission line is thus not cost-effective, which might imply 
that the TSO should choose the zero alternative. Since the figure shows 
expected values, the aleatory contributions to uncertainty are “averaged 
out” in this visual representation. In other words, these uncertainties are 
accounted for implicitly in the calculation of the expected values but not 
visualized explicitly. 

We then consider the epistemic contributions to uncertainty by 
applying the probabilistic-possibilistic uncertainty analysis method to 
the case. The results are obtained using M = 4 α-cuts and nLHS = 120 
additional samples of the epistemic uncertainty space. With NMC = 105 

as in Section 3.2, this gives a total number of 169⋅105 samples in the 
double-loop MC simulation. The number of samples was determined by 
increasing nLHS and nMC until there were no appreciable changes in the 
results as shown in the figures below. 

Fig. 6 shows the possibility distributions π(E(TCA)) and π(E(TCB))

for the expected total socio-economic costs. Similarly as Fig. 5, this 
figure shows that the expected socio-economic costs E(TC) are most 
likely greater with an additional transmission line. However, Fig. 6 in 
addition illustrates how implementing the risk-reducing measures 
greatly decreases the uncertainty in the socio-economic costs. E(TCA)

could possibly become up to around  2050⋅106 NOK without risk- 
reducing measures, but these possibilities are eliminated with the 

Fig. 3. Probability distribution for the interruption costs due to a single HILP 
event, assuming it occurs in year 1. Dashed and dotted vertical lines indicate 
expected values and VaR0.01 values, respectively. 
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investment of an additional transmission line. 
Fig. 7 provides an explicit visualization of the contributions of both 

epistemic and aleatory uncertainties by comparing the probability 
bounds (p-boxes) for the total socio-economic costs TC for the grid 
development alternatives. Compared to Fig. 5 (showing only expected 
values) and Fig. 6 (showing only epistemic uncertainty contributions 
explicitly), Fig. 7 provides more information and a more comprehensive 
description of the uncertainties relevant to the grid development prob-
lem. (A similar visual representation has previously been proposed in 
the context of flood risk mitigation [27].) The probability bounds define 
the boundaries of CDFs for the variable that are possible given the 

epistemic uncertainty contributions in the variable. Due to lack of 
knowledge one does not know the probability distribution function 
representing the aleatory uncertainty in TC, but one believes that its CDF 
has to be somewhere inside the coloured area of the p-box bounded by 
an upper and a lower CDF. The “best-guess” CDF for x = x0 is shown 
inside the p-box with a thick unbroken curve. A purely probabilistic 
uncertainty analysis would only return information about this 
“best-guess” CDF. 

The extent of the epistemic contributions to the uncertainty in TC can 
be appreciated from the width of the coloured areas of the p-boxes. The 
main contributor to this width is the uncertainty in the frequency λ. If 
this analysis had instead been applied to the case of a non-HILP event 
with much lower uncertainty in λ, the probability bounds around the 
“best-guess” CDF would have been much narrower. The additional value 
of this hybrid probabilistic-possibilistic methodology is therefore greater 
for HILP events with a substantial epistemic uncertainty in λ. 

The width and the area for the risk-reducing measures (B) in Fig. 7 
are much smaller than for the zero alternative (A). Similarly as for Fig. 6, 
this shows how investing in an additional transmission line reduces the 
epistemic uncertainties in the total socio-economic costs and constrains 
the aleatory uncertainties to be given by narrower bounds of possible 
CDFs. Comparing with Fig. 7, one realizes that the aleatory contribu-
tions to the uncertainty in TC are very large. 

From Figure 5 it could be seen that the expected value of the total 
socio-economic costs was around 100 ⋅106 NOK higher for alternative B, 

Fig. 4. Probability distribution for the present value of interruption costs due to HILP events over the analysis horizon for the zero alternative (left, and shown with 
alternative axis limits in the inset) and comparing the zero-alternative with the risk-reducing measure (right). Dashed and dotted vertical lines indicate expected 
values and VaR0.001 values, respectively. 

Fig. 5. Expected value of the total socio-economic costs for the two grid 
development alternatives. 

Fig. 6. Possibility distributions for the expected value of the total socio- 
economic costs for the two grid development alternatives. 

Fig. 7. Probability bounds (p-box) for the total socio-economic costs for the 
two grid development alternatives. 
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with the risk-reducing measures involving an additional transmission 
line, than for the zero alternative. The best-guess estimate for the ex-
pected net benefits E(ΔTC(x0)) is therefore negative. According to this, 
investing in an additional transmission line is not socio-economic cost- 
effective. The probability bounds for the net socio-economic benefits 
ΔTC are shown in Fig. 8. Here, the best-guess expected value E(ΔTC(x0))

≈ − 100 ⋅106 NOK is indicated by a purple dashed line. Considering 
then the “best-guess” CDF (for x = x0), shown as a thick unbroken curve, 
we can see from the intercept with ΔTC = 0 that there is only a small 
probability that the benefits will outweigh the costs (“b>c”). This 
probability is estimated as pb>c = 1 − F(ΔTC = 0) ≈ 3.6%. However, 
considering all CDFs within the probability bounds that are possible, 
given our lack of knowledge, the probability that benefits outweigh costs 
may possibly be as high as pb>c = 1 − 0.67 = 33% . 

Although we do not include a detailed analysis of sensitivities in this 
article, we have checked what assumptions for uncertain parameters 
would make the expected net benefits ΔTC (the dashed line in Fig. 8) 
positive: A value of the frequency λ of HILP events 2.2 times higher than 
the best-guess value λ0 would make the investment in the additional 
transmission line cost-effective. This increased event frequency is still 
within the range of possible values Aλ. On the other hand, the invest-
ment cannot be made cost-effective by changing any other parameter x 
with epistemic uncertainty within its range of possible values Ax. 
Developing methods for more advanced analysis of the sensitivity of the 
cost-benefit analysis to epistemic uncertainties and their interaction is 
proposed for future research. 

4. Discussion 

The methodology and results presented in the preceding sections 
have not presumed a specific risk attitude of the decision maker. Our 
starting point, however, as exemplified by the Norwegian Energy Act [6] 
in Section 1, was that the power system in principle should be developed 
in a socio-economic rational manner. This policy implies a risk neutral 
decision maker. Since the cost-benefit analysis in the previous sections 
resulted in a negative best-guess expected value E(ΔTC(x0)) for the net 
benefits, the conclusion would be that the TSO should not invest in an 
additional transmission line to reduce the risk of HILP events. On the 
other hand, if the decision maker allows some element of risk averse-
ness, the methodology can be used to appraise the risk and the robust-
ness of the conclusion more thoroughly. Appreciating the lack of 
knowledge, a risk averse decision maker could consider more conser-
vative (or even worst-case) estimates of the uncertain parameters [19], 
which might imply that the TSO should invest in the additional trans-
mission line after all. This illustrates how a more comprehensive 

description of risk may influence the grid development decisions that are 
made. 

However, for a TSO, risk management decisions should be viewed in 
a portfolio perspective: A grid investment decision problem as the case 
considered in this article is only one out of many decisions problems (i.e. 
grid investment projects) that the TSO considers at any given time. If the 
total costs of this portfolio of projects are large relative to the costs of a 
HILP event for an individual project, the TSO may be willing to accept 
this risk in order to minimize the expected socio-economic costs of the 
full portfolio, e.g. for an entire country. Let us for the sake of illustration 
assume that the TSO has 20 projects that are identical to the case 
considered above. Accounting for HILP events with a consistently risk- 
averse policy for all these projects implies a very substantial addi-
tional socio-economic cost due to grid investments of 4000⋅106 NOK. 
Assuming that the variables associated with aleatory uncertainty (CA, 
CB, r, Pinterr, c) are uncorrelated across the projects, the expected net 
benefit of risk-reducing measures for all projects would be −

2000⋅106 NOK. 
This example illustrates how one on could argue for a consistently 

risk neutral policy where each investment must be socio-economic 
rational. However, risk neutrality on a national level could mean that 
the TSO takes large risks on behalf of the population in some areas that is 
not shared by the rest of the population. In other words, distributional 
effects and considerations of fairness may have been neglected. 
Furthermore, one may have neglected systematic risks due to correla-
tions between different projects and between the projects and the overall 
national economy. This can be relevant for parameters associated with 
epistemic uncertainty such as the increase in specific interruption costs 
fc. Assuming a higher value of these parameters for one project likely 
means that one should also assume a higher value for the other projects 
in the portfolio. 

Finally, in the face of great uncertainties in the likelihood of HILP 
events that render risk analysis difficult, an alternative and comple-
mentary vulnerability analysis approach can be considered [7]. Taking a 
vulnerability perspective means that one puts less emphasis on esti-
mating the likelihood and more emphasis on understanding the poten-
tial consequences of HILP events, how they might arise, and how they 
can be mitigated. Such an approach may identify other and potentially 
less costly barriers against HILP events. If it is not cost effective with grid 
investment as a barrier to reduce the failure frequency λ, one may for 
instance consider barriers that reduce the interruption duration r or 
emergency preparedness measures. 

5. Conclusions 

In this article, we have proposed a methodology accounting for un-
certainties due to HILP events in socio-economic cost-benefit analyses. 
The methodology has been exemplified by a concrete case where a TSO 
considers investing in an additional transmission line to reduce the risk 
of HILP events. For this particular case, the expected net socio-economic 
benefits of these risk-reducing measures were negative (− 100⋅106 

NOK). An additional transmission line is therefore not socio-economic 
cost-effective according to a conventional cost-benefit analysis only 
considering expected values and neglecting epistemic uncertainties. 

However, we have demonstrated how the proposed methodology 
provides supplementary information describing the risk that can be 
balanced against the best-guess estimates of expected values provided 
by conventional cost-benefit analyses. More specifically, for the case 
study, the methodology could provide the TSO with the following 
additional insights:  

• If a HILP event does occur, there is in this case a non-negligible 
chance that the impact in terms of interruption costs becomes 
higher than 9000⋅106 NOK (as quantified by VaR0.01(IC)). Such risk Fig. 8. Probability bounds (p-box) for net socio-economic benefits of risk- 

reducing measures. The best-guess CDF and expected value are shown with a 
thick unbroken curve and a dashed line, respectively. 
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information would be hidden from the TSO if only expected values 
were presented.  

• Time-dependant correlations between the underlying factors of the 
interruption cost contribute to making these extreme high-impact 
outcomes more likely. Specifically, both load demand and the valu-
ation of reliability of supply (i.e. specific interruption costs) are 
higher during winter months in Norway.  

• The socio-economic costs of each system development alternative 
have both epistemic and aleatory uncertainty contributions (as 
quantified and visualized by probability bounds), and the additional 
transmission line reduces the epistemic uncertainties significantly.  

• Although an additional transmission line is most likely not socio- 
economic cost-effective, the probability that it will be cost-effective 
may possibly be as high as 33%.  

• A value of the frequency λ that is 2.2 times higher than the best- 
guess value would make the investment in the additional trans-
mission line cost-effective for this case. Changes in the other pa-
rameters with epistemic uncertainties, on the other hand, would not 
be enough to make the investment cost-effective. 

Such quantitative results and insights could not have been obtained 
using previously published qualitative methodologies for describing 
uncertainties due to HILP events [14]. Previously published quantitative 
methodologies [18,24–27], although based on methods related to those 
we employ, could not have provided comparable results since they were 
not adapted to power system development problems. 

The consequence and causal analysis parts [7,14] of the risk assess-
ment considered in the case study have been deliberately kept relatively 
simple and transparent. For the simple topology of the transmission 
system in this case, more detailed consequence analysis would be of 
little value since the other contributions to the uncertainties in the risk 
assessment are so large. The general uncertainty analysis methodology 
proposed in this article is however applicable also to more complex 
transmission system cases. For such cases and for applications to sensi-
tivity analysis, further work could investigate how the accuracy and 
computation time would scale as the dimensionality of the uncertainty 
space increase. Other extensions of the methodology may require more 
careful consideration and further research, such as more accurate 
valuation of reliability of supply and aspects of the societal costs of HILP 
events beyond those currently captured in CENS schemes [39]. Inter-
ruption cost estimates according to CENS schemes can be considered as 
lower bounds for the total socio-economic costs of the power interrup-
tion [28], and other aspects of the societal costs of HILP events are all 
associated with additional uncertainties. 
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Appendix 

In the case study, the specific interruption cost is calculated based on the Norwegian CENS scheme [2–5]. However, some adjustments and 
simplifications appropriate for HILP events with extraordinarily long interruption durations are made as described below. The specific interruption 
cost c for a power supply interruption event is calculated as [17,34] 

c(t, r) =
∑6

i=1
cref,i(r)⋅ fcorr,i(t)⋅Pref,i

/

P. (12) 

Here, the sum goes over all customer types i defined in the scheme, cref,i (r) is the sector customer damage functions for the reference time (“a 
workday in January”), fcorr,i(t) are time-dependant correction factors, Pref,i is the load at the reference time, and P is the average load as calculated from 
the entire input load time series P(t). 

Table 2 specifies the sector customer damage functions cref,i (r) used for the case study. Statnett’s own cost functions (for duration r > 24 hours) are 
used for all customer types except 3 and 6; for residential customers (type 3), survey results reported in [39] for extraordinarily long interruptions 
(duration r > 72 hours) are used; for energy-intensive industry (type 6), the ordinary CENS scheme customer damage function [2] for r > 8 are used. 
The composition of customer types for the area considered in the case study is specified in Table 3. 

Table 2 
Sector customer damage functions measured in NOK/kW (cost level 2018) at the 
reference time, with interruption durations r measured in hours, valid for r > 72 
hours.  

Customer sector Customer damage function 

1: Commercial 149.12 ⋅ r  
2: Industry 65.37 ⋅ r  
3: Residential 13.36 ⋅ r + 209.61  
4: Agriculture 19.63 ⋅ r  
5: Public 41.64 ⋅ r  
6: Energy-intensive industry 3.232 ⋅ r + 105.05   

Table 3 
Composition of customer types for end-users at risk of power interruptions in the 
case study, given by the fraction of the average load demand in the region.  

Energy- 
intensive 
industry 

Agriculture Industry Public Commercial Residential 

2% 4% 11% 14% 28% 41%  
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The interruption duration for the HILP events that are considered is much larger than the time scales characterizing variations in load and specific 
interruption costs within a day or within a week. For simplicity, we therefore only consider the time-dependant correction factors fcorr,i(t) averaged 
over each month. This approach is sufficient to capture the seasonal time-dependant correlations between load and specific interruption costs, e.g. the 
effect that load demand and the valuation of security of supply are both higher during winter. 
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